UNICORE, EUROGRID and GRIP

Hans-Christian Hoppe

5th Metacomputing Workshop, HLRS Stuttgart

Outline

- UNICORE approach
- UNICORE architecture and implementation
- Projects
 - UNICORE Plus
 - EUROGRID
 - GRIP
- Availability and outlook

UNICORE Approach

- Provide a uniform work environment for users
 - access mechanism (browser, dedicated client, ...)
 - authentication mechanisms (certificates, ...)
 - hide system details (commands, data archives, batch systems, ...)
 - define user-level resource and job model (task graph, ...)
 - allow job monitoring and steering

- Lots of projects worldwide
 - SDSC Hotpage
 - AHPCRC TeraWeb
 - Mississippi State DMEFS
 - EnginFrame from NICE
 - ...

UNICORE Approach

- Intended UNICORE users
 - end-users in a specific domain
 - general HPC end-users
 - NOT application developers

- Intended usage modes
 - batch execution
 - interactive steering
 - NOT general purpose interactive

- Degree of "transparency"
 - access and monitoring part
 - uniform job model
 - uniform resource model
 - NOT YET a uniform data model
 - NOT YET automatic brokering amongst resources

UNICORE Approach

- System architecture
 - multiple entry points, one per resource
 - cooperation between resources
 - allow for distributed computing

- Security mechanisms
 - user authentication by X.509 certificates
 - authorization handled per site
 - data integrity and confidentiality by reliance on SSL/https

- Implementation technique
 - emphasize portability, rely on standards
 - use Java for client and server components
 - build protocols on top of SSL/https
 - some (limited) use of XML

UNICORE Approach

- System integration and deployment
 - fit into common firewall setups
 - integrate into existing system administration procedures
 - preserve site autonomy (authorization, quotas, billing, ...)

- Extensibility
 - provide GUIs for particular applications (plugin mechanism)
 - extend set of supported resources, incarnation rules
 - configure third-party file transfers
 - ...

© Pallas GmbH
UNICORE Resource Model

- Usite
- Vsite
- Resources per Vsite
 - capacity
 - capability
- Resources are advertised to the client
 - pseudo-dynamic mode
- User submits jobs to Vsites
- Soon: automatic resource identification

UNICORE Job Model

- Directed acyclic graph of
 - tasks (computational or data transfer)
 - sub-jobs (to be executed at another Vsite)
 - temporal dependencies
- Attach resource requests to tasks
 - capacity (CPU time, disk, ...)
 - capability (MPI-2, profiling, ...)
 - can do static tests of jobs
 - can do resource brokering ...

UNICORE Architecture

- Client can run anywhere
- Gateway as single point of entry
- NJS incarnates and schedules jobs
- UDB (User Database) contains user login information
- IDB (Incarnation Database) contains resource information and job incarnation rules
- TSI (Target System Interface), interfaces to local batch system

UNICORE Security Model

- User authentication
 - Gateway requires user certificate to initiate SSL communication
 - pass (permanent) user certificate along with job description
 - can pass site-specific authentication information (e.g. SecurID passcode)
- User authorization
 - Vsite maps certificate to local userid
 - authorization based on local userid
- Job and request integrity
 - each DAG is signed with the private key
 - the Vsite executing a sub-job can check the sign
- Required trust
 - the user protects his/her private key
 - the CA is not compromised

UNICORE Technology

- Client and server components implemented in Java–2
- Authentication using X.509 certificates
 - UNICORE Plus project uses own public key infrastructure (PKI)
 - software can work with any other PKI
- Coexistence with firewalls
 - gateway as single point of entry
 - can run outside firewall, in DMZ or inside firewall
 - user authentication at that point: rogue users can’t go further
- Secure data transmission using SSL
 - additional data encryption considered in EUROGRID
- Modeling of computational jobs and resources as Java objects (AJO)
Application Frontends

- Create GUIs that support important applications
 - UNICORE client has a plugin interface
 - GUI simplifies data entry for application
 - GUI can support application-specific resources
 - GUI constructs (complicated) job chains automatically

- GUI will use UNICORE client to
 - submit the application job
 - monitor and control the application job

- Helpful features
 - end-users concentrate on applications
 - extended consistency checks

- Existing frontends
 - CPMD molecular dynamics code
 - Fluent, Gaussian, ...

Projects Around UNICORE

UNICORE = GRID system for seamless access to (High Performance) Computing Systems

<table>
<thead>
<tr>
<th>Project</th>
<th>Goals</th>
<th>Duration</th>
<th>Funded by</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNICORE Plus</td>
<td>Product, Deployment at HPC Centers</td>
<td>01/2003-12/2002</td>
<td>German gov. (BMBF)</td>
</tr>
<tr>
<td>EUROGRID</td>
<td>European HPC centers, scientific applications, industrial involvement</td>
<td>11/2000 – 10/2003</td>
<td>EU FP5</td>
</tr>
<tr>
<td>GRIP</td>
<td>Interoperability UNICORE and GLOBUS</td>
<td>01/2002 – 12/2003</td>
<td>EU FP5</td>
</tr>
<tr>
<td>Various new projects</td>
<td>Applications, tools, deployment, ...</td>
<td>≥ 2002</td>
<td>EU FP5</td>
</tr>
</tbody>
</table>

UNICORE Plus Project

- German national R&D project
- First production version (3.0) available since end of 2000
- Current phase: deployment and end-user evaluation

- Involvement of major German HPC centers
 - FZ Jülich
 - LRZ München
 - ZIB Berlin
 - Paderborn
 - HLRS Stuttgart
 - RZ Karlsruhe
 - DWD

- Involvement of vendors
 - Cray/SGI
 - Hitachi
 - IBM
 - NEC
 - Sun

- Involvement of ISVs
 - Pallas (FECIT)

EUROGRID – UNICORE in Europe

- Started as IST project end of 2000
- Based on UNICORE software release 3.0
- Domain-specific extensions
 - biology, meteorology, CAE
 - General-purpose extensions
 - data transfer, resource brokering, ASP, interactive use
 - Current phase: deployment, requirements analysis

- Involvement of European HPC centers
 - FZ Jülich
 - LRZ München
 - DWD
 - University of Manchester
 - Parallax
 - CSCS
 - ICM Warsaw

- Involvement of industry
 - EADS CCR
 - Pallas
 - debis Systemhaus
 - FECIT
EUROGRID Partners

HPC Centers
- CSCS Manno (CH)
- FZ Jülich (D)
- ICM Warsaw (PL)
- IDRIS Paris (F)
- Univ Bergen (N)
- Univ Manchester (UK)

Users
- Deutscher Wetterdienst
- EADS
- debis Systemhaus (Assistant Partner)

Integration
- Pallas (Project Coordinator)
- Fecit (Assistant Partner)

Volume: 33 person years, 2 MEuro funding by European Commission Grant No. IST–1999–20247

Bio–GRID

- PSE for bio–molecular applications
- Operate a GRID for bio–molecular simulations
- Develop interfaces to existing biological and chemical codes

Meteo–GRID

- Develop a relocatable version of DWD’s local weather prediction model
- ASP solution for on demand localized weather prediction

CAE–GRID

- Coupled simulations of aircrafts (e.g. structure and electromagnetism)
- Goal: internal HPC portal for EADS engineers

CAE–GRID

- Provide HPC portal to engineers at Daimler–Chrysler and partners
- Develop GRID technology for computing cost estimates and billing
EUROGRID Interactive Access

- Demonstrate a European HPC GRID testbed
- Develop new GRID applications
- Enable sharing of competence and know-how
- Agree on security standards, certification, access policies, ...

EUROGRID Resource Broker

- Based on UNICORE system
- Develop additional GRID components
 - efficient data transfer
 - ASP infrastructure
 - resource broker
 - application coupling
 - interactive access
- Integration of new components by Pallas and Fecit

EUROGRID Application Coupling

- Started as IST project beginning of 2002
- To produce interoperability software for
 - using Globus resources from UNICORE
 - submitting UNICORE jobs from Globus
- To enhance the EUROGRID resource broker to span
 UNICORE and Globus
- To evaluate the interoperability with
 - biomolecular applications from ICM
 - on-demand weather prediction from DWD
- Current phase:
 - requirements analysis
 - architecture specification
- Argonne National Labs is participating!
GRIP Partners

- HPC Centers
 - FZ Jülich (D)
 - ICM Warsaw (PL)
 - Univ. Manchester (UK)
 - Univ. Southampton

- Users
 - Deutscher Wetterdienst

- Integration
 - Pallas (Project Coordinator)
 - Argonne National Labs

Volume: 18 person years, 1.2 M€ Euro funding by European Commission Grant No. IST–2001–32257

UNICORE vs. Globus 2.x

- Comparison of UNICORE and Globus
 - UNICORE lacks interface application
 - UNICORE lacks MDS
 - UNICORE has workflow model & interface
 - UNICORE has stricter security model

- Security
 - UNICORE uses consigner/endorser model
 - Globus jobs are not signed, use temporary certificates
 - Stealing a Globus cert seems easy, no limit to damage

- Data Transfer
 - Globus relies on GridFTP (although users can use any mechanism from within job)

- Resource modelling/handling
 - Globus uses Grid Information Services (GIS) to learn about available resources
 - Globus user Resource Specification Language (RSL) to request resources
 - UNICORE uses GetResources request and Java objects

UNICORE ⇒ Globus 2.x Architecture

- Generate Globus proxy certificate from client
- IDB maker generates incarnation databases semi-dynamically
- Globus resources become visible through the IDB maker
- Have Globus TSI control the job execution within Globus
- Map UNICORE job control commands to Globus conventions

GRIP and OGSA

- Clearly, Globus 2.x interoperability is of limited value and interest
- Introduce OGSA compatibility
 - model the UNICORE Client ↔ Gateway protocols in WSDL
 - model internal interfaces (Gateway, NJS, TSI)
- Integrate the resource broker into OGSA

Availability and Outlook

- Current version: UNICORE 3.6
 - missing functionality: control tasks (If, Repeat, …)
 - available for project partners and on request
 - starting May 2002: access to full sources

- Upcoming production version: UNICORE 4.0
 - supports control tasks
 - many improvements to the user interface
 - release in July/August timeframe
 - partners and source repository will be updated

- Results from EUROGRID and GRIP to be made available in a similar manner …
Open Issues

- Running a PKI in the real world
 - provide reasonable level of security
 - don’t offend users …

- Cope with security people
 - source IP-filtering makes access from anywhere impossible …
 - work with stricter rules for outgoing IP

- Obnoxious authentication systems
 - SecurID and skey will require pass codes for trivial operations …

- Get more user input
 - users of classic HPC centers
 - industrial users (ASP-like model)

Further Information

- Leaflets (on a desk in the lobby)

- WWW pages
 - http://www.fz-juelich.de/unicore
 - http://www.unicore.org
 - http://www.eurogrid.org
 - http://www.grid-interoperability.org

© Pallas GmbH