A European GRID Approach - UNICORE, EUROGRID and GRIP

Hans-Christian Hoppe

IBM Grid Innovation Center, Montpellier, 2002

Outline

- UNICORE history and motivation
- UNICORE approach
- UNICORE architecture and implementation
- UNICORE projects
- Availability and outlook

History and Motivation

- Once upon a time ...
 - there were many different HPC platforms
 - many organizations would run a "zoo" of systems

- Users of academic and industrial HPC centers had to cope with
 - primitive access mechanisms (telnet, ssh)
 - cumbersome authentication mechanisms (SecurID, S/key, …)
 - complicated batch systems (NQS, LL, …)
 - need to become experts of the systems they’re working on

- As a result
 - users stick to “their” systems
 - new platforms spell trouble
 - loss of flexibility at the centers

UNICORE Approach

- Provide a uniform work environment for users
 - access mechanism (browser, dedicated client, …)
 - authentication mechanisms (certificates, …)
 - hide system details (commands, data archives, batch systems, …)
 - define user-level resource and job model (task graph, …)
 - allow job monitoring and steering

- Lots of projects worldwide
 - SDSC Hotpage
 - AHPCRC TeraWeb
 - Mississippi State DMEFS
 - EnginFrame from NICE
 - …

- The UNICORE effort
 - originated from the leading German HPC centers in 1997
 - focused on seamless access within and across centers
 - emphasized security issues
 - avoided issues of resource pooling and brokering
 - decided to use the latest technology (Web-based client, Java)

- Achievements
 - demonstration of the architecture in 1999
 - working implementation in 2000/2001
 - production-ready implementations in 2001/2002

- Beneficial developments
 - broader scope (e.g. resource discovery and brokering)
 - emphasis on user interfaces for applications
 - open interfaces, protocols and (now) source
UNICORE Approach

- System architecture
 - multiple entry points, one per resource
 - cooperation between resources
 - allow for distributed computing

- Security mechanisms
 - user authentication by X.509 certificates
 - authorization handled per site
 - data integrity and confidentiality by reliance on SSL/https

- Implementation technique
 - emphasize portability, rely on standards
 - use Java for client and server components
 - build protocols on top of SSL/https
 - some (limited) use of XML

UNICORE Resource Model

- Usite
- Vsite
- Resources per Vsite
 - capacity
 - capability
- Resources are advertised to the client
 - pseudo-dynamic mode
- User submits jobs to Vsites
- Soon: automatic resource identification

UNICORE Job Model

- Directed acyclic graph of
 - tasks (computational or data transfer)
 - sub-jobs (to be executed at another Vsite)
 - temporal dependencies

- Attach resource requests to tasks
 - capacity (CPU time, disk, …)
 - capability (MPI-2, profiling, …)
 - can do static tests of jobs
 - can do resource brokering …

UNICORE Architecture

- UNICORE Clients
- UNICORE Job Supervisor
- Secure Intranet
- Command or Routine I/F
- Cray NCE
- IBM LE
- SUN NQS
- UNICORE Batch interface

UNICORE Security Model

- User authentication
 - Gateway requires user certificate to initiate SSL communication
 - pass (permanent) user certificate along with job description
 - can pass site-specific authentication information (e.g. SecurID passcode)

- User authorization
 - Vsite maps certificate to local userid
 - authorization based on local userid
 - each DAG is signed with the private key
 - the Vsite executing a sub-job can check the sign

- Required trust
 - the user protects his/her private key
 - the CA is not compromised
UNICORE – Job Submission and Execution

- UNICORE Client
 - User certificate
 - Gateway
 - UPL requests/replies over SSL
- NJS Server
 - User login id
 - Job script over TCP
- Batch interface
 - Multi_optimization \Rightarrow -O4
 - execute under user login id

- User certificate
- Gateway
- UPL requests/replies over SSL or sockets
- NJ/S Server
- User login id
- Job script over TCP
- Batch interface
- Multi_optimization \Rightarrow -O4
- execute under user login id

UNICORE Technology

- Client and server components implemented in Java–2
- Authentication using X.509 certificates
 - UNICORE Plus project uses own public key infrastructure (PKI)
 - software can work with any other PKI
- Coexistence with firewalls
 - gateway as single point of entry
 - can run outside firewall, in DMZ or inside firewall
 - user authentication at that point: rogue users can’t go further
- Secure data transmission using SSL
 - additional data encryption considered in EUROGRID
- Modeling of computational jobs and resources as Java objects (AJO)

UNICORE GUI – Authentication

- Unlock keystore
- User certificate
- CA certificate

UNICORE GUI – Main Screen

- Main dialog area
- Job panel
- Action buttons
- Monitor panel

UNICORE GUI – Job Construction

- Task graph
- Available sites
- Available machines

UNICORE GUI – Task Definition

- Files to be imported
- Files to be exported
- Job structure
- Script text
- Specify resources
Application Frontends

- Create GUIs that support important applications
 - UNICORE client has a plugin interface
 - GUI simplifies data entry for application
 - GUI can support application-specific resources
 - GUI constructs (complicated) job chains automatically
- GUI will use UNICORE client to
 - submit the application job
 - monitor and control the application job
- Helpful features
 - end-users concentrate on applications
 - extended consistency checks
- Existing frontends
 - CPMD molecular dynamics code
 - Fluent, Gaussian, ...

Projects Around UNICORE

<table>
<thead>
<tr>
<th>Project</th>
<th>Goals</th>
<th>Duration</th>
<th>Funded by</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNICORE Plus</td>
<td>Product, Deployment at HPC Centers</td>
<td>01/2000-12/2002</td>
<td>German gov. (BMBF)</td>
</tr>
<tr>
<td>EUROGRID</td>
<td>European HPC centers, scientific applications, industrial involvement</td>
<td>11/2000 - 10/2003</td>
<td>EU FP5</td>
</tr>
<tr>
<td>GRIP</td>
<td>Interoperability UNICORE and GLOBUS</td>
<td>01/2002 - 12/2003</td>
<td>EU FP5</td>
</tr>
<tr>
<td>Various new projects</td>
<td>Applications, tools, deployment, ...</td>
<td>> 2002</td>
<td>EU FP5</td>
</tr>
</tbody>
</table>
UNICORE Plus Project

- German national R&D project
- First production version (3.0) available since end of 2000
- Current phase: deployment and end-user evaluation
- Involvement of major German HPC centers
 - FZ Jülich
 - LRZ München
 - ZIB Berlin
 - P6 Paderborn
- Involvement of vendors
 - Cray/SGI
 - Hitachi
 - IBM
 - Siemens
- Involvement of ISVs
 - Pallas

EUROGRID – UNICORE in Europe

- Started as IST project end of 2000
- Based on UNICORE software release 3.0
- Domain-specific extensions
 - biology, meteorology, CAE
- General-purpose extensions
 - data transfer, resource brokering, ASP, interactive use
- Current phase: deployment, requirements analysis
- Involvement of European HPC centers
 - FZ Jülich
 - CNRS-IDRIS
 - DWD
 - University of Manchester
 - ICM Warsaw
- Involvement of industry
 - EADS CCR
 - debis Systemhaus
 - FECIT

EUROGRID Partners

- HPC Centers
 - CSCS Manno (CH)
 - FZ Jülich (D)
 - ICM Warsaw (PL)
 - IDRIS Paris (F)
 - Univ Bergen (N)
 - Univ Manchester (UK)
- Users
 - Deutscher Wetterdienst
 - EADS
 - debis Systemhaus (Assistant Partner)
- Integration
 - Pallas (Project Coordinator)
 - FECIT (Assistant Partner)

Bio–GRID

- PSE for bio–molecular applications
- Operate a GRID for bio–molecular simulations
- Develop interfaces to existing biological and chemical codes

Meteo–GRID

- Develop a relocatable version of DWD’s local weather prediction model
- ASP solution for on demand localized weather prediction

Meteo–Grid

- Ubiquitous access to local weather prediction software, developed at DWD and CSCS

Volume: 33 person years, 2 MEuro funding by European Commission Grant No. IST–1999–20247
CAE–GRID

- Coupled simulations of aircrafts (e.g., structure and electromagnetism)
- Goal: internal HPC portal for EADS engineers

EUROGRID Technology

- Provide HPC portal to engineers at Daimler-Chrysler and partners
- Develop GRID technology for computing cost estimates and billing

HPC–GRID

- Demonstrate a European HPC GRID testbed
- Develop new GRID applications
- Enable sharing of competence and know-how
- Agree on security standards, certification, access policies, ...

- CRAY T3E 900 (32 PE)
- NEC SX5/240
- Linux Cluster (8 PE)
- FZJ
- Intel Linux Cluster (32 PE)
- CRAY T3E - 400 (12 PE)
- CRAY T3E - 1200 (212 PE)
- Commit
- NEC SX5 cluster (60 PE)
- IBM Power4/200 PE, 1.3 TLOPS
- COMPAQ Linux Cluster (24 PE)

GRIP – Compatibility to Globus

- Started as IST project beginning of 2002
- To produce interoperability software for
 - using Globus resources from UNICORE
 - submitting UNICORE jobs from Globus
- To enhance the EUROGRID resource broker to span UNICORE and Globus
- To evaluate the interoperability with
 - biomolecular applications from ICM
 - on-demand weather prediction from DWD
- Current phase: requirements analysis, architecture specification
- Argonne National Labs is participating!

GRIP Partners

- HPC Centers
 - FZ Jülich (D)
 - ICM Warsaw (PL)
 - Univ. Manchester (UK)
 - Univ. Southampton
- Users
 - Deutscher Wetterdienst
- Integration
 - Pallas (Project Coordinator)
 - Argonne National Labs

Volume: 18 person years, 1.2 MEuro funding by European Commission Grant No. IST–2001–32257
Availability and Outlook

- Current version: UNICORE 3.6
 - missing functionality: control tasks (If, Repeat, …)
 - available for project partners and on request
 - starting May 2002: access to full sources

- Upcoming production version: UNICORE 4.0
 - supports control tasks
 - many improvements to the user interface
 - release in July/August timeframe
 - partners and source repository will be updated

- Results from EUROGRID and GRIP to be made available in a similar manner …

Open Issues

- Running a PKI in the real world
 - provide reasonable level of security
 - don’t offend users …

- Cope with security people
 - source IP-filtering makes access from anywhere impossible …
 - work with stricter rules for outgoing IP

- Obnoxious authentication systems
 - SecurID and skey will require pass codes for trivial operations …

- Get more user input
 - users of classic HPC centers
 - industrial users (ASP-like model)

Further Information

- Leaflets (on a desk in the lobby)

- WWW pages
 - http://www.fz-juelich.de/unicore
 - http://www.unicore.org
 - http://www.eurogrid.org
 - http://www.grid-interoperability.org

 UNICORE Plus project
 UNICORE Forum
 EUROGRID project
 GRIP project